A statistical fMRI model for differential T2* contrast incorporating T1 and T2* of gray matter.

نویسندگان

  • M Muge Karaman
  • Iain P Bruce
  • Daniel B Rowe
چکیده

Relaxation parameter estimation and brain activation detection are two main areas of study in magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Relaxation parameters can be used to distinguish voxels containing different types of tissue whereas activation determines voxels that are associated with neuronal activity. In fMRI, the standard practice has been to discard the first scans to avoid magnetic saturation effects. However, these first images have important information on the MR relaxivities for the type of tissue contained in voxels, which could provide pathological tissue discrimination. It is also well-known that the voxels located in gray matter (GM) contain neurons that are to be active while the subject is performing a task. As such, GM MR relaxivities can be incorporated into a statistical model in order to better detect brain activation. Moreover, although the MR magnetization physically depends on tissue and imaging parameters in a nonlinear fashion, a linear model is what is conventionally used in fMRI activation studies. In this study, we develop a statistical fMRI model for Differential T2(*) ConTrast Incorporating T1 and T2(*) of GM, so-called DeTeCT-ING Model, that considers the physical magnetization equation to model MR magnetization; uses complex-valued time courses to estimate T1 and T2(*) for each voxel; then incorporates gray matter MR relaxivities into the statistical model in order to better detect brain activation, all from a single pulse sequence by utilizing the first scans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite

Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...

متن کامل

Inversion-recovery echo-planar MR in adult brain neoplasia.

PURPOSE A T1-weighted multishot inversion-recovery (IR) echo-planar MR imaging (EPI) sequence was developed to improve intracranial tissue differentiation; its diagnostic utility was compared with that of conventional axial T1-weighted spin-echo and axial T2-weighted turbo spin-echo sequences. METHODS Eighteen patients with known or suspected primary or metastatic brain neoplasia were imaged ...

متن کامل

White Matter Atrophy in Patients with Mesial Temporal Lobe Epilepsy: Voxel-Based Morphometry Analysis of T1- and T2-Weighted MR Images

Introduction. Mesial temporal lobe epilepsy (MTLE) associated with hippocampal sclerosis is highly refractory to clinical treatment. MRI voxel-based morphometry (VBM) of T1-weighted images has revealed a widespread pattern of gray matter (GM) and white matter (WM) atrophy in MTLE. Few studies have investigated the role of T2-weighted images in revealing WM atrophy using VBM. Objectives. To comp...

متن کامل

MRI Protocols Comparison of In-Vivo Spinal Cord Imaging of the Rats for Segmentation Purposes

We are developing a three-dimensional (3D) model of the rat spinal cord to act as a reliable tool for investigating mechanisms of spinal injury. Segmentation and meshing, by which the spinal geometry is extracted into a model, requires both considerably clear boundaries and high-contrast representation of the cord components: white matter, grey matter, meninges, CSF and IVD. Unfortunately, desp...

متن کامل

A Rotational Cylindrical fMRI Phantom for Image Quality Control

PURPOSE A novel phantom for image quality testing for functional magnetic resonance imaging (fMRI) scans is described. METHODS The cylindrical, rotatable, ~4.5L phantom, with eight wedge-shaped compartments, is used to simulate rest and activated states. The compartments contain NiCl2 doped agar gel with alternating concentrations of agar (1.4%, 1.6%) to produce T1 and T2 values approximating...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Magnetic resonance imaging

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2014